数学课堂怎样引导学生质疑

数学课堂怎样引导学生质疑?教师教学中关注学生成长是教学的前提,因此教师要不断优化教学手段,才能最大限度地激发学生学习的积极性,今天,朴新小编给大家带来与数学有关的方法。
 

创设质疑氛围
 

“学贵有疑,小疑则小进,大疑则大进。”但是,目前的课堂教学中许多教师还是串讲串问,牵着学生走,没有留给学生积极思维的空间。要将质疑引入课堂,教师要更新观念,明确提问不仅是教师的权利,应该使质疑成为学生自身需要,教师在设计教学内容、教学环节时,要以儿童的兴趣为出发点,有意创设质疑氛围,使学生因趣生疑,因疑生奇,因奇生智。创设问题情境的方法多种多样,可以用旧知不能解决新问题,挑起矛盾,让学生产生问题;可以让学生在动手操作的实践中发现问题;也可以通过设计开放性数学问题,让学生展开想象;还可以在知识的对比、归纳、概括中让学生面对问题……
 

由于学生间存在着个别差异,在质疑问难时,往往不能提在点子上、关键处。这时,教师应以鼓励为主,消除学生的畏惧心理,激起他们质疑问难的热情。为了使每个学生都敢于提问,教师还可以根据实际情况,因材施教。如组织学生分小组进行讨论,让自卑、胆怯的学生在小组内提问,锻炼他们的胆量,树立其自信心;对于口头表达能力差的学生可以先让他把问题写在纸上,再照着念,循序渐进,不能要求过高,急于求成,使其失去信心;对于课堂上来不及提问或言犹未尽的学生,可在课下让他把要提的问题,要讲的话说给老师。这样学生提问题的积极性就能得以保护,提问题的胆量也就越来越大,逐步养成敢想、敢问、敢说的习惯。

教给方法,让学生有“疑”可质
 

从心理学角度说,好问和好奇是儿童的天性,是儿童求知欲的表现。教师要善于利用儿童这份天性,教给质疑方法,让学生学会把学习过程中有价值的疑难问题提出来。教师要做好示范。学生的一切活动都是从模仿开始的,质疑也是如此。教师应注意质疑的“言传身教”。还应使学生明确在哪儿找疑点。教师要教会学生质疑在新旧知识的衔接处、学习过程的困惑处、法则规律的结论处、教学内容的重难点处,概念的形成过程中、算理的推导过程中、解题思路的分析过程中、动手操作的实践中等,还要让学生学会变换视角,既可以在正面问,也可以从反面或侧面问。即无处不可生疑,无时不可生疑。如可让学生这样想:“概念”为什么这样表述?能否增加或删改一些字词?在概念内涵的挖掘、外延的拓展上质疑。
 

例如,在教学“分数的意义”时,引导学生对分数含义的关键词质疑,如“为什么单位’1’的’1’字要加引号”。计算:有没有更简便的方法,在“理”字上下功夫质疑。例如,在教学“一个数除以小数”5628÷0.67时,可质疑“为什么一定要把除数转化成整数,而不是把被除数化为整数”?应用题:列式的依据是什么?力求寻找更好的解法。例如,在教学“分数工程问题”时,可问“为什么可以用单位’1’来代替具体的数据”。教学时要鼓励学生对任何一个问题都去探索,或提出与众不同的看法,甚至提出其他学生或老师一时也想不到的问题,这是学会质疑的关键。有时学生质疑的涉及面广,显得“多而杂”。这时老师要组织学生讨论,哪些问题问得好,哪些问题不着边际,不是教材的内容和重点,引导学生逐步由“多而杂”变为“少而精”。只要引导得法,学生就能有所发现,逐渐学会质疑。
 

数学课堂中如何培养学生质疑能力

精心创设矛盾,让学生善于质疑
 

教育家孔子提出:”疑是思之始,学之端,疑是点燃学生思维探索的火种。”因此,在教学中,教师要有意识地设置矛盾,让学生发现问题,提出问题,利用学生的”好奇”心理,培养学生质疑的主动性。这种”好奇”心理往往能促进学生细心观察,发现问题,并提出问题。进而主动去进行探索活动
 

在教学《万以内笔算减法》的时候,教学进入练习之前,我留下一定时间让学生质疑问难,一个学生提出:四位数的减法,可不可以从高位减起?这是大家都意想不到的问题,我听到这个质疑以后,没有立即表态,更没有提出反驳意见,而是把质疑的问题当成新的认知冲突,因势利导,引导学生在新的问题情境中进行探索学习,我为学生提供三道计算题,作为新的探索材料,接着耐心地等待大家的研究和探讨。在组织交流时,我启发学生充分发表意见,学生经历了”猜想(假设)――论证――实践――结论”这样一个认知过程。得出”从高位减起,一次看两位,不够减时,也要向前一位退1,不过要先退1,再写上差”。最后我通过问题:”课本上为什么选择了从个位减起”来小结,引导学生对两种方法进行比较,使学生认识到有些方法尽管是可行的,但由于操作繁琐、效率低下,一般是不可取的。这样,既使学生认识到这段学习的收获和意义,又没有给质疑的学生留下一丝一毫的伤害痕迹。而是有效地突出了学生的主体地位,使学生再一次获得了自主学习成功的情感体验。

教给质疑方法,让学生学会质疑
 

常言道:”授之一鱼不如授人一渔”。培养学生学会是前题,而让学生会学才是目的。我们要让学生想问、敢问、好问,但更应该让他们会问。要使学生认识到不会问就不会学习,会问才是具备质疑能力的重要标志。因此,我们教师要做好示范。学生的一切活动都是从模仿开始的,质疑也是如此。教师要启发学生自由发表意见,营造一个民主、和谐的口语交际氛围,使学生敢想、敢说、敢问、敢发表自己的意见。学会用恰当的语言表达自己的疑惑,并进而达到问的巧、问的精、问的新、问的有思维价值。
 

例如教学《因数中间有0的乘法》时,在总结因数中间有0的乘法法则后,我问学生还有什么不理解的地方。这时,有一位同学举手问:”因数是三位数,为什么在计算过程中只乘两次?”这个问题正是本课教学的重点,说明还有学生不理解,这时我抓住学生提出的这个问题进行着重教学,巩固了”0与任何数相乘都得0″这一结论,使学生明白”用0乘这一步可以省略”的道理。这样,学生在自己提出的问题的驱动下,积极思考,获得了渴望获得的知识,而且逐渐培养了学生的质疑兴趣。让学生自己提出问题,解决问题,是学生求知、掌握学习方法的基点。
 

怎样引导学生有效交流

,

学霸君1对1-智能测评+个性化提升,学霸君严选全国好老师1对1辅导,先学习满意再付费!学霸君在线1对1,大数据精准测评+智能场景辅导!智能场景家长实时监督

 年级:初中/高中/小学/中考/高考

 科目:数学/物理/化学/英语/语文

 中小学在线辅导,全程陪伴式学习

 

,

1.教师认真选择选择交流内容,让学生乐于交流
 

教师针对教学目标、重难点,结合学生实际,选择富于科学性、故事性、趣味性、创新性、实用性和探究性的问题进行讨论,既能激起学生学习的兴趣,又能增强学生合作意识。如:苏教版第八册实践活动《我们去春游》,这是一个现实的情境,孩子有一定的生活经验,讨论的问题是“东东带了10元钱最多可以玩哪几个项目?最少可以玩哪几个项目?”学生们开始都忽视了划船及乘快艇价格表后的信息(每船限坐4人,每艇限坐2人),但是,在老师引导学生在自己的游玩经验中思考问题时,一些有游玩经验的同学产生了对问题的质疑,大家猛然醒悟,这两项活动可以将人数凑齐再去玩,则每人分摊的钱会少一些,从而能多玩几个项目,这样的现实情境激活了他们的生活经验,学生有兴趣走入,感到数学就在我们身边,从而乐于交流这样的数学问题。
 

2.创设宽松、和谐的交流氛围,让学生敢于交流
 

创设宽松、和谐的交流的氛围,学生们把自己的各种感受、质疑与问题带到课堂中来,展开无拘无束的讨论。他们的内在动机、求知欲得到诱发和补偿,学习的积极性、主动性能得到充分的发挥,体验到学习的快乐,分享成功的喜悦。在这种氛围中,老师要善于鼓动,主动参与,善于发现学生交流时的闪光点,教师对于学生的评价有比较重要的作用,如“你别急,慢慢讲”、“你真有见解啊!”“你的想法很有创造性!”等激励性的语言,会激发学生交流的愿望,产生竞争意识,所有学生都会积极参与,敢于交流,敢于提出自己的质疑,同时得出自己的结论。
 

3.把握交流契机,让时机适合交流
 

课堂上一定要把握好学生之间交流的契机,而不是一遇到问题就讨论。这样容易让一部分学生思维懒惰,指望别人得出的结论。我觉得以下几种情形就是学生交流的契机:在学生意见不一时引导交流,让他们在争辩中获得启迪,获得灵感;在学生需要时引导交流,让他们准确、迅速地完成一个人难以完成的任务;在学生具备一定的感性认识,小有收获时交流,让他们在交流中领略他人的思想策略与方法,不断反思修正自己的认识,提高自己的思维水平。
 

怎样引导学生参与到数学课堂

一、让学生参与数学公式、定理的推导与发现过程,培养学生的创造思维能力
 

数学教学中的每个公式、定理都是数学家们辛勤研究得到的成果,而他们的研究过程蕴藏着深刻的数学思维过程.因此,让学生参与公式、定理的推导发现,对培养学生的创造思维能力有巨大的影响.例如,我在讲授“三角形中位线定理”中,首先,通过学生的实践度量,让学生量出三角形中位线和第三条边长,获得感性认识,然后引导学生猜想并提出本课重点:三角形中位线的特征.经过学生的讨论,很自然地得到这个定理.但学生的参与只是获得感性认识,接着我就指导学生怎样用理论进行证明.令我惊讶地发现,同学们不仅用书上的证明全等的方法,还想到用相似的方法.通过学生的主动参与,很好地培养了学生的创造性思维.
 

二、让学生参与运算过程,提高学生的运算能力
 

众所周知,运算能力是思维能力与运算技能的结合,是解决问题的必备能力.而运算能力主要体现在运算的正确、迅速、灵活、合理等方面.新课改以后降低了运算要求,并提倡用计算器解决有关问题,但在数学教学中不能忽视运算能力的培养.刚开始,我在教学中只注重几何问题的推理证明,对计算问题一掠而过,只是和学生校对答案,满以为学生只要掌握方法就可以顺利解决.泰州地区禁止在中考中使用计算器,学生在考试中出现计算能力很差,失分很多的现象.“ 到底是谁若的祸?”是计算器的过度应用吗?这不是根本原因,归根到底只有让学生参与运算过程,也就是让学生通过观摩教师和学生的演算过程,抓住运算的实质和宗旨,才能提高学生的洞察能力,增强学生运算的合理性,由此提高学生的运算能力.
 

三、让学生参与数学思想方法的提炼和总结,培养学生的概括能力
 

例如我在讲解一道中考试题时深有感触,试题如下:若当等对角线四边形中两条对角线所夹锐角是60°,请你探索这对60°角所对的两边之和与其中一条对角线的大小关系.实际上,此题可由学生来参与某些数学思想的提炼.在课堂教学中,我首先让学生回顾了等腰梯形的对角线及其经常使用的一些辅助线,学生自然就想到平移对角线的方法,并画出此题的特殊图形,得出了两边之和等于对角线的结论.接着,我又提出了问题:如果是一般的等对角线的四边形,又有什么数量关系呢?学生由此又想到了一般图形,并由此证明了“其两边之和大于对角线”的结论.最后我又鼓励学生们总结提炼出此题的类比、从特殊到一般的数学思想方法.通过让学生参与数学思想方法的提炼和归纳,学生的数学能力有了质的飞跃.
 

以上就是
小编为您整理数学课堂怎样引导学生质疑的全部内容,更多精彩请进入
栏目查看。


学霸君是专注于中小学生在线一对一辅导、人工智能、拍照搜题的学习平台。旗下学霸君1对1严选全国好老师,为学员量身定制个性化学习方案,辅导包含高中初中小学全科目。学习新场景+智能大数据分析,让中小学生更方便找到适合自己的好老师,学习更高效。

  • 【全国好老师】严选全国好老师

    高学历高能力老师执教,各地经验教师,专业扎实,严控教学质量;

  • 学霸君1对1】中小学在线1对1辅导

    24h轻松上课,打破时间地域限制,针对性教学,孩子学习更专注;

  • 学习新场景】智能教学模式+大数据分析

    1对1个性化学习方案量身定制,课堂随时旁听,全面了解学习进度;