如何培养学生的数学思想方法

如何培养学生的数学思想方法?数学思维能力的培养,方法很多,途经很广。但无论怎样,教师的教学都要遵循教育原则,符合教学规律和数学学科的特点,坚持从学生的思维特点和学生的实际出发,才能达到预期的效果。 今天,朴新小编给大家带来数学教学技巧。
 

1、学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,从多侧面、多角度思考问题,挖掘问题的实质。学习数学只看书不做题不行,只埋头做题不总结积累也不行。要在积极主动地学习过程中结合自身特点,寻找最佳学习方法。
 

2、数学教学离不开解题教学,数学思想方法是数学解题的指南,离开了数学方法指导的解题很难达到解题的目的。而数学思想方法的形成,又离不开数学解题实践。在数学解题过程中,我们既要重视基础知识的识记、消化吸收、理解和积累,又要注重数学基本思想方法的提炼和总结。

 

3、在教材中要渗透数学思想方法,在教法中要应用数学思想方法。数学思想方法的教学要结合教学内容进行,不能脱离教学内容只传授形式。脱离了数学思想方法指导的教学和脱离了内容的数学思想方法的教学都是不全面的教学。训练“方法”,理解“思想”。数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中阶段不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。
 

数学思想培养方法一

新课程学习时,注意渗透数学思想。
 

在教学活动中,教师在教授知识时,应该注重知识的推演过程,在讲解基础知识的同时,注意引导,循序渐进,带领学生一步步共同挖掘其中蕴含的数学思想。数学思想较抽象和分散,教师可以通过举例、类比的方式将其具体化,并进行系统性的总结概括,这样可以发展学生的逻辑思维,增强问题意识和创新能力。比如在学习一元一次方程时,教师在讲解方程概念的时候,可以利用一道简单的一元一次方程带领学生共同解题,说明解一元一次方程的本质内容是将复杂方程一步步进行简单化,最终得到一个常数,并让学生自行概括如何解一元一次方程及每一步转化的依据。
 

注意总结,使数学思想系统化。
 

数学思想蕴含在基础知识及各种题目中,学生能够理解,但是由于内容较分散,在解题时又会感觉没有头绪。教师要注意适当总结,每学习完一个章节都及时对其中的数学思想方法进行系统化的梳理,适当做些题目强化记忆,使学生能灵活运用。在初中阶段,学生的思想还未成熟,在初中数学教学中渗透数学思想方法,可以对学生进行一定的思维能力训练,提高学生的思维品质,提高分析、解决问题的能力及创新能力,有利于促进学生综合素质的发展,更好地适应未来社会。
 

通过例题讲解,传达数学思想方法。
 

例题是具有典型性的题目,近几年来各地高考中有很多题目都来源于课本,把数学思想渗透在每一个试题中,考查学生对于数学思想方法的理解和运用。教师在解题时,重点讲授其中运用的数学思想方法,不告诉学生答案,然后出一道类似的题目让学生现场解题并进行讲解,主要讲述题目用到的数学思想,研究不同解题方法,然后共同进行分析。比如在解决∠α和∠β与等腰三角形关系一题时,可以运用课件,先画出两个三角形,让学生研究这两个三角形中∠α和∠β之间的关系,得出两角相加等于一个直角的结论,再让学生注意观察两个三角形,然后转动三角形,再探索∠α和∠β的关系,得出两角相加为一个平角。老师让学生讲遵循的依据,然后引导学生注意观察两个三角形之间的不同。在此课题中,采用了类比转化的数学思想,用已学知识猜想未知,学生了解两角相加是直角时是什么三角形,两角相加是平角时又是什么样的三角形,再由此引出三角形的性质就是顺理成章的事了。
 

数学思想培养方法二

重视数学知识的形成过程,培养学生思维能力。
 

数学概念是数学理论知识的基础,是进行判断、推理、论证等逻辑推理的依据。教学中教师应当使学生认识概念的形成过程,从中抽象概括归纳出概念的本质属性,防止照本宣科,教师直接给出定义,让学生有定义的做法。只有学生参与了概念的形成过程,才能变被动为主动,才能积极有效地培养学生的思维能力。
 

,

学霸君1对1-智能测评+个性化提升,学霸君严选全国好老师1对1辅导,先学习满意再付费!学霸君在线1对1,大数据精准测评+智能场景辅导!智能场景家长实时监督

 年级:初中/高中/小学/中考/高考

 科目:数学/物理/化学/英语/语文

 中小学在线辅导,全程陪伴式学习

 

,

重视定理的证明过程,因为定理的证明过程本身就是一个严密的逻辑思维过程,同时它的证明过程具有一定的典型性,学生掌握了这些具有代表性的方法后,可以应用于同类型问题的解答,提高学生处理和解决为题的能力。这些代表性的数学方法,就是解决数学问题的基本策略,是数学思想的具体化反映。通过对数学基本方法的了解与掌握,逐渐在脑海里就形成了数学思想方法。而数学思想的形成反过来又对数学基本方法起着指导作用,学生解决问题就有了逻辑性,学生的逻辑思维能力就得到了锻炼和提高。

 

课堂教学中引导学生及时地总结数学思想与数学方法,培养学生的创新思维。
 

日本数学家米国山藏说过:“学生在初、高中接受的数学知识,因毕业后几乎没有去应用,所以通常是出校门不到一两年,很快就忘掉了,然而,不管他们从事什么职业,做什么工作,唯有深深地铭刻于头脑中的数学精神、数学思维方法、研究方法等随时随地发生作用,使他们终身受益。” 因此,所以学生领会数学思想、掌握数学方法比学习数学知识显得更为重要。教学中教师要把数学思想和数学思想方法的渗透作为数学教育的重要内容,决不能只重视数学知识的学习,而忽视对学生数学思想与方法的渗透。
 

教师要善于挖掘教材,教学中引导学生分析、总结、归纳出数学方法,还要在学生练习中,通过类比训练,掌握一般方法,这样学生就会触类旁通,举一反三,遇到问题,能够把握大方向,不会觉得无从下手。教学中还应适当渗透一些高等数学思想。高等数学思想其实在小学数学中普遍存在,教师要善于挖掘,有意渗透。如集合、一一对应、排列组合、抽屉原理等思想在中小学数学学习过程中都会涉及到。通过数学思想的渗透,有利于培养学生的创新思维能力和学习数学的兴趣。
 

数学思想培养方法三

数学概念的教学中,渗透数学思想方法
 

数学概念的形成过程往往是通过学生熟知的一些生产、生活的实例、实物、模型等,向学生提供丰富的感性材料,让学生观察对象的共同点,分析、对比、归纳、抽象概括出对象的本质属性,从而形成概念.因此,概念教学不应只是简单的给出定义,而要引导学生感受及领悟隐含于概念形成之中的数学思想.比如在七年级学习“相反数”这个概念时,通过分析3和-3这两个数的特点,引导学生自行得出相反数的概念:“只有符号不同的两个数”.为了加深理解,把这两个数画在数轴上,也可以这样定义相反数:在数轴上原点的两旁,离开原点的距离相等的两个点所表示的两个数互为相反数.这样,通过数形结合的数学思想来比较教学,学生也更容易理解0.5与-12是互为相反数.又如:在八年级学习“矩形”的定义时,通过观察矩形与平行四边形的共同点,分析、对比引导学生自行归纳出矩形的概念:“有一个角是直角的平行四边形.”同时为了加深概念的理解,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,可以发现,角的大小改变了,但仍然保持平行四边形的形状.因此可以得出:平行四边形+一个直角=矩形.
 

数学概念的教学中借助图形来认识概念,必须从图形中找出规律性的东西,这样便把感性认识用数学语言抽象到理性认识,才能使学生正确地理解概念,牢固地掌握概念.因此数形结合的数学思想,不仅能够提高学生数形转化能力,还可以提高学生迁移思维能力.华罗庚曾说:“数缺形时少直觉,形缺数时难入微.”通过深入的观察、联想,由形思数,由数想形,利用图形的直观诱发直觉.当然,并不是所有的数学概念都能用图形来帮助理解的,对于具体问题应作具体分析.
 

在探究知识的过程中,注重渗透数学思想方法
 

渗透数学思想需要坚持进行,在日常教学任务中,结合初中生思维方式来进行。学生掌握数学思想的前提是牢固的基础知识,结合学习期间遇到的问题,不断的探索,使用不同的方法来解答问题。这样能够培养学生结合使用公式的能力。
 

新课标要求,教学注重学生的知识形成过程,特别是定理、性质、公式的推导过程和例题的求解过程,基本数学思想和数学方法都是在这个过程中形成和发展的,因而教师在讲授概念、性质、公式的过程中应重视推导过程,知识生成发展中把握时机不断渗透相关的数学思想方法,让学生在掌握表层知识的同时,又能领悟到深层数学思想方法,从而使学生的思维产生质的飞跃。在教学过程中要引导学生主动参与结论的探索、发现、推导过程,搞清其中的因果关系,领悟它与其他知识的关系,让学生亲身体会创造性思维活动中所经历和应用到的数学思想和方法。
 

以上就是
小编为您整理如何培养学生的数学思想方法的全部内容,更多精彩请进入
栏目查看。


学霸君是专注于中小学生在线一对一辅导、人工智能、拍照搜题的学习平台。旗下学霸君1对1严选全国好老师,为学员量身定制个性化学习方案,辅导包含高中初中小学全科目。学习新场景+智能大数据分析,让中小学生更方便找到适合自己的好老师,学习更高效。

  • 【全国好老师】严选全国好老师

    高学历高能力老师执教,各地经验教师,专业扎实,严控教学质量;

  • 学霸君1对1】中小学在线1对1辅导

    24h轻松上课,打破时间地域限制,针对性教学,孩子学习更专注;

  • 学习新场景】智能教学模式+大数据分析

    1对1个性化学习方案量身定制,课堂随时旁听,全面了解学习进度;