如何培养学生数学思维与兴趣

如何培养学生数学思维与兴趣?随着教学改革的深入发展,在数学教学中有目的、有计划、有步骤地培养学生的思维能力,是每个教师十分关心的问题。下面,朴新小编给大家带来培养学生思维的技巧。
 

观察能力的培养,学习兴趣的产生
 

观察能力是认识事物,增长知识的重要能力,是智力因素构成的重要部分。在小学数学教学中必须引导学生掌握基本的观察方法,学会在观察时透过事物表象,抓住本质,发现规律,达到不断获取知识,培养能力,发展智力的目的。我认为人们对知识的认识和积累都是通过观察实践而得到的。没有观察就没有丰富的想象力,也不可能有正确的推理、概括和创造性,所以有意识地安排学生去观察思考,逐步培养学生的观察能力,发展学生的想象力。既增加了数学的趣味性,又创造了良好的课堂气氛。

加强直观教学,培养学习兴趣
 

在教学中教师单从提高语言表达能力和语言“直观”上下功夫,还是远远不够的。要解决数学知识的抽象性与形象性的矛盾,还应该充分利用直观教学的各种手段。“直观”具有看得见,摸得着的优点,“直观”有时能直接说明问题,有时能帮助理解问题,给学生留下深刻的印象,使学生从学习中得到无穷的乐趣。由直观感知上升到抽象的理解。有了这个基础求一个数比另一个数多(少)多少的教学就根顺利了,体现了“直观”教学的优越性。
 

重视操作,培养实际动手能力
 

―位教育家这样说过:“儿童的智慧就在他的手指尖上”。许多事实证明科学是动手“做”出来的。我们在学习数学的过程中,也要学会“做”数学,比如量身高,可以帮助我们理解米和厘米等长度单位的概念,对其有具体的感知;走一段路程,可以帮助我们正确理解“千米”的含义;称称一两块砖和一两枚硬币,可以帮助我们弄清“千克”和“克”的区别;剪几个对等的三角形拼成长方形或平行四边形,又可让我们得出并掌握三角度面积的计算方法。总之,在动手操作的过程中,可以引发我们创造性地思维。
 

如何培养 初中 数学思维能力

从“方法”了解“思想”,用“思想”指导“方法”
 

初中数学中的数学思想和方法的内涵与外延目前尚无公认的定义。其实,在中学数学中,许多数学思想和方法是一致的,两者之间很难分割,它们之间是相辅相成的,又相互蕴涵,只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在中学数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,使数学思想与方法得以交融的有效方法。
 

明确基本要求,渗透“层次教学
 

数学课程标准》对初中数学渗透的数学思想、方法划分为三个层次,即“了解”“理解”和“会运用”。在数学教学中,要求学生了解数学思想有数形结合的思想,分类的思想,化归的思想、类比的思想和函数的思想等等。这里需要说明的是,有些数学思想在数学大纲中并没有明确提出来。比如,转化与化归思想是渗透在学习新知识和运用知识、解决问题的过程中的,在方程的解法中就贯穿了“一般化”向“特殊化”转化的思想方法。
 

教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在课标中要求“了解”的方法有:分类法、类比法等。要求“理解”的或“会运用”的方法有待定系数法、消元法、配方法、换元法、图象法等。在教学中,要认真把握好“了解”、“理解”、“会运用”这三个层次,不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会运用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们失去信心。如九年级数学中明确提出“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但课标只是把“反证法”定位在“了解”的层次上,我们在教学中应牢牢地把握住这个“度”千万不能随意提高、加深。否则,教学效果将会得不到提高。
 

初中数学思维的方法

通过范例和解题教学培养思维能力
 

,

学霸君1对1-智能测评+个性化提升,学霸君严选全国好老师1对1辅导,先学习满意再付费!学霸君在线1对1,大数据精准测评+智能场景辅导!智能场景家长实时监督

 年级:初中/高中/小学/中考/高考

 科目:数学/物理/化学/英语/语文

 中小学在线辅导,全程陪伴式学习

 

,

在教学中,一方面通过解题和反思活动,从具体数学问题和范例中总结归纳解题方法,并提炼和抽象成数学思想;另一方面在解题过程中,充分发挥数学思想方法对发现解题途径的定向,联想和转化功能,举一反三,触类旁通,以数学思想观点为指导,灵活运用数学知识和方法分析问题、解决问题。范例教学通过选择具有典型性、启发性的例题和练习进行。要注意设计具有探索性的范例和能从中抽象一般和特殊规律的范例来进行教学,还要通过解题以后的反思,优化解题过程,总结解题经验,提炼数学思想方法。
 

数学思想方法的培养是当今数学教育改革的发展方向,全国各地报纸杂志的有关论述比比皆是。仔细研读,发现绝大部分文章均有一种倾向,只要提到创造思维,无不批判定式思维在创造思维形成过程中的阻碍作用,无不强调克服和消除定式思维的消极影响,而对定式思维的积极作用一般都是一带而过或一字不提。但我认为这种是肤浅的、片面的,对加强双基教学有一定的危害性。

数形结合的思想方法
 

学习数学基础知识和培养学生解决实际问题的能力时,往往可以由数到形、以形辅数、数形结合地考虑问题,把抽象的数量关系用图形反映出来。利用比较直观图形解决抽象的数量关系问题;也可以用比较直观的图形使数量关系的变化趋势更加明确;还可以把几何图形转化为数量关系。
 

学习相反数、绝对值、有理数的大小的比较及有理数的加法等都离不开图形——数轴。数轴是数形结合的产物,加强数形的对应训练,对今后的数学教学是非常重要的。如学习函数内容时,根据函数的三种表示法,有些从数的角度刻画了函数的特征,有些从形的角度直观地反映了函数的性质,也就是从“数”和“形”的角度反映、解释了同一问题中两个变量之间的依赖关系。
 

怎样如何提高数学思维能力

(1)解题教学。教学中选择适当的题目类型,有利于培养,考察学生的直觉思维。例如选择题,由于只要求从四个选择支中挑选出来,省略解题过程,容许合理的猜想,有利于直觉思维的发展。实施开放性问题教学,也是培养直觉思维的有效方法。开放性问题的条件或结论不够明确,可以从多个角度由果寻因,由因索果,提出猜想,由于答案的发散性,有利于直觉思维能力的培养。
 

(2)数学直觉的基础是产生直觉的源泉。直觉不是靠“机遇”,直觉的获得虽然具有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的知识为基础。若没有深厚的功底,是不会进发出思维的火花的。阿提雅说:“一旦你真正感到弄懂一样东西,而且你通过大量例子以及通过与其它东两的联系取得了处理那个问题的足够多的经验.对此你就会产生一种关于正在发展的过程是怎么回事以及什么结论应该是正确的直觉。”阿达玛曾风趣的说:“难道一只猴了也能应机遇而打印成整部美国宪法吗?”
 

(3)数学的哲学观点及审美观念。直觉的产生是基于对研究对象整体的把握,而哲学观点有利于高屋建邻的把握事物的本质。这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。例如(a+b)2= a2+2ab-b2,即使没有学过完全平方公式,也可以运用对称的观点判断结论的真伪。
 

(4)直觉思维的意境和动机诱导。这就要求教师转变教学观念,把主动权还给学生。对于学生的大胆设想给予充分肯定,对其合理成分及时给予鼓励,爱护、扶植学生的自发性直觉思维,以免挫伤学生直觉思维的积极性和学生直觉思维的悟性。教师应及时因势利导,解除学生心中的疑惑,使学生对自己的直觉产生成功的喜悦感。
 

以上就是
小编为您整理如何培养学生数学思维与兴趣的全部内容,更多精彩请进入
栏目查看。


学霸君是专注于中小学生在线一对一辅导、人工智能、拍照搜题的学习平台。旗下学霸君1对1严选全国好老师,为学员量身定制个性化学习方案,辅导包含高中初中小学全科目。学习新场景+智能大数据分析,让中小学生更方便找到适合自己的好老师,学习更高效。

  • 【全国好老师】严选全国好老师

    高学历高能力老师执教,各地经验教师,专业扎实,严控教学质量;

  • 学霸君1对1】中小学在线1对1辅导

    24h轻松上课,打破时间地域限制,针对性教学,孩子学习更专注;

  • 学习新场景】智能教学模式+大数据分析

    1对1个性化学习方案量身定制,课堂随时旁听,全面了解学习进度;